M atlab softwar e for
Minimum Description Length Shape M odelling
Version 2

Hans Henrik Thodberg

Draft, 25" March 2003

Abstract. This note contains information on how to use the open source Matlab
implementation of the Minimum Description Length approach to Shape Model-

ling.

1. Introduction

This document should be read together with the paper “Minimum description Length
Shape and Appearance Models’, which introduces the method and describe its basic
properties.

The first thing you may want to do with the software is to check that your installa-
tion reproduces the results in the paper. This is done by running the following scripts.
Theindicated run times are for Matlab on a 1.2 GHz Windows PC.

Tablel: Test runs

Script Comment Run time

runBoxBunp. m runs 40 passes asin the paper | 10 minutes

runMet acar pal Model. m| runs40 passesasin the paper | 10 minutes

runFemur FreeMbde2. m | runs 40 passesasin the paper | Ca 15 minutes

Each script produces six figures. The number of passes is controlled by the vari-
able nPasses. After you have made a run, you can run say 10 additional passes by
setting nPasses=10 and executing RunExt r a. m The information of the extra
passes is then appended to the existing history in the plots.

2. How to apply the method on your data

Y ou can run the method on your own data by writing ar unXXX script. The easiest
case is when you don’t want to use an annotated master example; then you can easily

construct the run script in analogy with the script r unFernur Fr eeMode2 shown
here:

cl ear;
InitiateML;

st udyNanme=' Ferur Free Ends';
[C, Cn] = FornfFenur;

ends = 2;

P = 64;

ps = [32 64 65 16 48 8 24 40 56];
Astart = 0. 04;

Aend = 0. 04;

node = 2;

si gmaCut = 0. 003;
nPasses = 40;
Run;

InitiateMDL sets default values for various variables and should always be
called. st udyNarme is the string used as heading on al plots. Cand Cn is where you
put the contours to be processed. C is a matrix of complex numbers: each row is a
contour, i.e. the numbers are the points of the polyline that defines the contour. The
number of columnsin C corresponds to the longest of the contours, and Cn is a col-
umn vector with the length of each contour. The remaining entries in that row must
be set to the values of the last point in the contour. Thus for contour s the length is
Cn(s) andthecontourisinC(s, 1: Cn(s)) andC(s, Cn(s)+1:end) should
beequal to C(ss, Cn(ss)) . No two subsequent pointsin acontour must be equal.

ends = 2 meansthat it is an open shape with free end-points. P = 64 means
that we want 64 marks on the shape. P must a power of 2. Since the shape is open the
actual number of marks is P+1=65. ps contains the list of nodes, i.e the active marks
whose location are optimised for each shape individually. They are written in order of
the level of nodes: 32, 64 and 65 are at the middle, end and start nodes respectively
and are on level 1, 16 is between the start node and node 32, and 48 between middle
and end and are on level 1, and 8, 24, 40 and 56 are on level 3.

Astart = 0. 04 indicates that we want on average to skip an arc length of
0.04 of the contour in the start. Aend = 0. 04 islikewise skipped in the end (recall
than arc length is normalised internally to atotal of one for each shape). This means
that if one shape wants to start at 0.02, another must start at 0.06 etc. Thus Ast ar t
defines a constraint on the start node and Aend a constraint on the end node. There
are also congstraints on the remaining seven internal nodes; their node parameters
should on average be 0.5. The constraints are implemented in the nodeCost term.
Since we are running in mode 2 the constraint will not be exactly obeyed - if you
want that, use mode 4.

node=2 was explained aready, and si gnmaCut denotes how accurate we what to
model the shapes, roughly corresponding to arelative precision of 0.3%.

nPasses = 40 isusudly sufficient, but sometimes the optimasation converges
after only 10 passes. If you are curious, set nPasses = 10 and look at the plots,

and then set nPasses = 30 and execute RunExtra. That is equivalent to
nPasses = 40.

The Run and RunExt r a commands finish by showing some plots in figure 1-6.
Figure 1 is the history of node parameters, which gives an excellent overview of the
course of the 9*32 = 288 dimensional optimisation process and reveals convergence
or trends. Figure 2 is the total cost, also helpful for watching for convergence. Figure
3 isthe PCA at the start of the analysis. This is useful if you start the search from a
configuration, which is already good, for instance a manual annotation, are definition
based on some heuristic principle. You can for instance used the MDL approach to
fine-tune a manual method and so it is interesting so see what the model look like at
the start compared to at the end which is shown in figure 4. Figure 5 shows the break
down of the MDL const function into the terms corresponding to the modes. A cost
term of one corresponds to lambda equal to the cut value. Finally figure 6 shows the
shapes with the MDL optimised nodes.

To summarise, if you have open curves like the femurs, replace For nfenur s
with your code and just run. Increase Ast art and Aend, if some shapes try to move
beyond the end. If you have closed curves, again with no annotated master example,
you would write the following for the metacarpal data:

cl ear;
InitiateMDL;

st udyNanme=' Met acar pal ’ ;
[C, Cn] = FornFenur;

ends = 1;
P = 64;
ps = [32 64 16 48 8 24 40 56];

node = 2;
sigmaCut = 0.003;
nPasses = 40;
Run;

The changes areends = 1 (signalling closed curve), and node 65 was omitted.
Node 64 is the location of the end node, which is now aso the start node. And
Ast art and Aend are omitted.

Running in this way with no annotation is a neutral choice: We are seeking a
reparametrisation, which brings the shape in correspondence, and which are penalised
if they are uneven on average in arc length. If you want the average location to be
exactly even in arc, use mode 4.

Notice that in the metacarpal example it is assumed that al contours are oriented
the same way around the object, and that the start of the contours is at approximately
corresponding points across the set.

Additional illustrative experiments

A number of additional experiments can be performed with the scripts below. These
experiments illustrate properties of the method and provide examples of how to run
the more advanced modes.

Table 2: Other illustrativeruns

Script Comment Run time

runBoxBunpTrue. m Initiates the shapes with the | 2-3 minutes
‘true’ positions of the marks and
runs 10 passes. This illustrates
that the MDL solution is a little
different from the 'true’ posi-
tions.

r unBoxBunpRepro. m Runs two experiments with | 10 minutes
boxBump from different initial
configurations showing that in
the large nPasses limit the
two converges to the same result
(although the lower right corner
of the box converges extremely
slow).

runMet acar pal Mbde3. m| Runs 40 passesin mode 3 8 minutes

runFemur FreeMbdel. m | Runs 40 passesin mode 1, illus- | Ca. 19 minutes
trating a tendency to run-away.

runFenur Fr eeMbde3. m | Runs 40 passes in mode 3, giv- | Ca. 16 minutes
ing uniform marks on average.

runFemur FreeMbde4. m | Runs 40 passes in mode 4, giv- | Ca. 16 minutes
ing uniform marks on average.

runFemur Fi xed. m Runs 40 passes fixed endpoints. | Ca. 12 minutes
Actually it converges after 10
passes

The purpose of these five runsis the following:

r unBoxBunpTr ue. m illustrates that the small deviation been the MDL solution
and the ‘true’, seen at the bump is not a deficiency of the optimisation method, but a
reflection of the cost function itself.

r unBoxBunpRepr 0. m demonstrates how to verify that the result does not de-
pend on theinitial configuration. Such runs can be extended to a more complete study
on your data, in case you want to verify to what extent your found MDL solution is
unique on your data.

runMet acar pal Mode3. m should be compared with runMetacar -
pal Model. m which is run in mode 1. You can see that example 1 which ends up
being extreme with mode 1, is more typical when run in mode 3. This shows that
mode 1 introduces some unwanted bias.

runFemur Fr eeModel. m showsthat mode 1 with free ends lead to several run-
away for the femur data.

Femur Free Ends Femur Free Ends Femur Free Ends

Node value
Node value

0 100 200
Feep Ruerbends

Node value
Node value

0 100 200 0 100 200 0 100 200
Fesep RuerbEnds Festep RuerbEnds

Node value

Step number Step number Step number

Figure 1: Mode 1: The seventh parameter (lower left) attains mean 0.525, while the
master is fixed at 0.500. Likewise for the ninth.

Femur Free Ends Femur Free Ends Femur Free Ends

0.55

Node value
o
[5,]
Node value

0.45

0.6

Node value

Node value

"o 100 200 0 100 200
Fediep Ruerbends Fe8tap realdends

Node value

Step number Step number Step number

Figure 2: Mode 2: Here the averages are fixed at 0.500 the now free example 1 at-
tains 0.488 and .496 (blue), so now its no longer mthe minimum but the 4-5 lowest

Node value

Node value

Node value

Node value Node value

Node value

Femur Free Ends

Femur Free Ends

Femur Free Ends

100
FeBtap Fuaatiends

200

Node value

100
Fesep Rueabends

100
Femep Rueabends

100
FeBtap ueatiends

200

Node value

0.6

Step number

Femur Free Ends

Step number

Figure 3: Mode 3

Femur Free Ends

Step number

Femur Free Ends

0.55

0.45
0

100
Febiep Reerbends Fedtep Reerbends FeBtap teadends
@
3
g
[
=3
o
P4
0.4
0 100 200 0
Fedep Ruerbends

0.5 0.6
) o 0.54
=S E]
[[
- 5 0.52
=3 =l
o o |}
=z P4 0.

0.45 0.4 0.48

0 100 200 0 100 200

Step number

Step number

Figure 4: Moded.

Step number

runFemur Fr eeMode4. m demonstrates mode 4, which is similar to mode 2, but
the result of mode 4 are nodes uniformly in arc length on average, while this is only
approximately true for mode 2.

The datasets et a2. nat and f er nur 32. mat are enclosed for the purpose of
verifying, that the results in the paper agree with the software. Y ou are allowed to use
these data for other academic purposes without permission from the author.

3. Moreon the Structure of the Software

Contours are represented as polylines given by a vector of complex numbers. No-
tice that the imaginary axis points upwards, while most image data has the y-axis
pointing downwards, so remember this when you convert data from x-y coordinates to
complex numbers, i.e.usec=x—iYy.

Given a contour and a chosen number of marks, e.g. 64, the mark coordinates are
computed from the contour and the mark parameters, which are denoted aor A.

Run. mwas implemented as a script in order to make it work on the workspace

variables. This can be used for further analysis, plotting, and for additional runs using
RunExtra. m

As described in the paper, the algorithm can be run in four modes. Mode 1 uses a
fixed example. This sometimes leads to run-away, and in general it leads to the un-
wanted effect that case 1 is treated differently from the other cases as demonstrated in
runMet acar pal Mode3. mabove. Therefore, despite the nice idea of a single la-
belled example mode 1 is realy not a lasting option of this framework, and it isin-
cluded merely for historical purposes, and to illustrate why it is not desirable.

In stead of mode 1, three new modes are provided, mode 2, 3, and 4. They all rely
on adding second term, the nodeCost to the MDL cost function to get a total cost
function which is then minimised in the usual way. Mode 2 is the simplest. Here you
simply provide the vector aTarget to be used directly in nodeCost.

Mode 3 and 4 are more sophisticated. Here aTarget in nodeCost is replaced by a
dynamic target aTargetNow, which initially is aTarget, but which is adjusted at the
start of every pass. The adjustment is made so as obtain one of two desired goals:

Mode 3: aTar get Nowisadjusted sothat A(1, :) = aTarget

Mode 4: aTar get Nowis adjusted so that nrean(A) = aTar get.

The central optimisation routing exists in two version: the function Opt i ni se. m
that supports mode 1 and Mohammed and Opt i mi seCon. m which supporting
mode 2, 3, 4, which operates with various constraints on the node parameters through
the node cost. Thereisalot of overlap between these two routines, but the choice was
made to keep each version simple.

The code was optimised for speed, and indeed it is the speed that is the most
unique quality of the software. As mentioned in the paper the tree elementsin bold in
this pseudo code, each take 1/3 of thetime.

Loop over passes

Loop over nodes
Loop over 5 steps
Loop over exanpl es

Loop over
Pr obe

+ and - step
a(node) = a(node) +- step of exanple

Reconmput e marks of exanpl e

Do Procrustes of set

Do PCA of set

Comput e new MDL

If new MDL is | ower accept and break | oop
Undo a(node) change

End of +-

step | oop

End of exanple |oop

I f <20% of

a(node)’ s changed, divide step(node) by 2

End of step | oop
End of node | oop
End of passes |oop

Recompute the marks involves a lot of book keeping and this would run much
faster in C. Procrustes was done a complex eigenvalue problem, which allows the use
of the fast build-in function and comparable to a C-version. Likewise the PCA is

closeto optimal.

Another reason for the speed is the hierarchical node structure, where only the 8
highest level nodes are optimised, while the remaining 56 are uniformed in arc length.

An overview of the run script parameters are tabulated in table 3; a description was
also given aboveinrelation to the femur run

Table 3: Parameters of the optimisation script Run

Parameter Explanation

st udyNane String used astitle of plots

c On The contours are the complex rows of C, Cn is the length of
each contour, i.e. contour risin C(r, 1: Cn(r))

ends ends=0: open curve with fixed ends
ends=1: closed curves
ends=2: open curve with free ends

P Granularity (or resolution) of shape: The shape is a sampling
of the curve, The sampling points are called marks
Closed curves have P sampling point. P/ 2 and P are on the
top level.
Open curves have P+1 marks P/ 2, P and P+1 are the middle,
end and start respectively.

ps ps are List of nodes gives as a vector of the number of the
marks.

node Mode=1,2,3 or 4 controls the use of templates and Node-
Codt, see the text

si gmaCut Thelevel at which shape information becomes irrelevant

nPasses The number of passes used for the optimisation

If you want to provide a single example where the node positions are true, to act as
matseer you should used the parameters in table 4. The true position of a mark can
only be used for marks of the top levels. The master must be example 1. In the exam-
ple metacarpal and boxBump the nodes on level 1, 2 and 3 where fixed for the master
example. One could alow fixing only part of the nodes on level 3, but all the nodes at
the higher levels should be fixed. The fixing is done by letting the contour have
points at the nodes. SO if point 29 on contour 1 isfixed

Table 4: Additional parameters used to define annotated examples (the script
InitiateM DL sets useMast er NodeVal ues=0 i.e. the default is not to use this fea-
ture)

Parameter Explanation
useMast er NodeVal ues | 1 jndicates that Mast er NodeVal ues are to be used.
Mast er NodeVal ues List of the location of the nodes on the master given as a
vector of point numb3rsin the contour, see text
initAll 1 if al the shapes should be initialised according to
Mast er NodeVal ues

There are two examples of this in from the paper: In the boxBunp we know that
the true pointsare Mast er NodeValues = [1 2 3 4 5 6 7 25 26];

Asshowninfigure ...

And in the metacarpal case the contours are using a heuristic tatdraiatoin along a
bone axis and the truth according to theseis given by Mast er Nodeval ues = [1 31
71 111 141 171 211 251 281]; Inthe metacarpal case the optimisation isin
fact started using exactly this alignment, so all the shapes are started here, as signalled
by theinit All =1.1nitAl | =1isalsousedinrunBoxBunmpTrue above. The default
vaueofinitAll isOandissetby I nitiateML.

P = 64;

ps = [32 64 16 48 8 24 40 56]; %64 is the same as 0
useMast er NodeVal ues = 1;

Mast er NodeValues = [1 2 3 45 6 7 25 26];

P = 64;

ps = [32 64 16 48 8 24 40 56];

useMast er NodeVal ues = 1;

Mast er NodeValues = [1 31 71 111 141 171 211 251 281];
initAll = 1;

When you are using a master example the way to convey the information about the
true location of the marks on the master example is through the parametersin table 4.
The true locations must be among the nodes, and the locations must be among the
points defining the contours. For example the boxBunp contours are defined as in the
following figure, using 26 points where 1 and 26 are at the same location. 8 of these
points are selected as nodes of the master. They are listed i.e. in the r unBoxBunp
below node; 6481624 32404856 areat C([,1 2 3 4 5 6 7 25 26]).

The r unBoxBunp script creates 24 random shapes according to the parameters
given to For nBoxBunp. The last parameter 0.7 controls how much the bum’s position
varies horizontally, the second the vertical box side length (the first parameter is not
used). Thus the figures are created with two degrees of freedom, so we expect only
two eigenvalues to be significant. The random generator isinitialised in the routine so
you should obtain the same data when running it.

