

 Matlab software for

Minimum Description Length Shape Modelling
Version 2

Hans Henrik Thodberg

Draft, 25th March 2003

Abstract. This note contains information on how to use the open source Matlab
implementation of the Minimum Description Length approach to Shape Model-
ling.

1. Introduction

This document should be read together with the paper “Minimum description Length
Shape and Appearance Models”, which introduces the method and describe its basic
properties.

The first thing you may want to do with the software is to check that your installa-
tion reproduces the results in the paper. This is done by running the following scripts.
The indicated run times are for Matlab on a 1.2 GHz Windows PC.

Table 1: Test runs

Script Comment Run time
runBoxBump.m runs 40 passes as in the paper 10 minutes
runMetacarpalMode1.m runs 40 passes as in the paper 10 minutes
runFemurFreeMode2.m runs 40 passes as in the paper Ca. 15 minutes

Each script produces six figures. The number of passes is controlled by the vari-

able nPasses. After you have made a run, you can run say 10 additional passes by
setting nPasses=10 and executing RunExtra.m. The information of the extra
passes is then appended to the existing history in the plots.

2. How to apply the method on your data

You can run the method on your own data by writing a runXXX script. The easiest
case is when you don’t want to use an annotated master example; then you can easily

construct the run script in analogy with the script runFemurFreeMode2 shown
here:

clear;
InitiateMDL;

studyName='Femur Free Ends';
[C, Cn] = FormFemur;

ends = 2;
P = 64;
ps = [32 64 65 16 48 8 24 40 56];
Astart = 0.04;
Aend = 0.04;

mode = 2;
sigmaCut = 0.003;
nPasses = 40;
Run;

InitiateMDL sets default values for various variables and should always be

called. studyName is the string used as heading on all plots. C and Cn is where you
put the contours to be processed. C is a matrix of complex numbers: each row is a
contour, i.e. the numbers are the points of the polyline that defines the contour. The
number of columns in C corresponds to the longest of the contours, and Cn is a col-
umn vector with the length of each contour. The remaining entries in that row must
be set to the values of the last point in the contour. Thus for contour s the length is
Cn(s) and the contour is in C(s,1:Cn(s)) and C(s, Cn(s)+1:end) should
be equal to C(ss, Cn(ss)). No two subsequent points in a contour must be equal.
ends = 2 means that it is an open shape with free end-points. P = 64 means

that we want 64 marks on the shape. P must a power of 2. Since the shape is open the
actual number of marks is P+1=65. ps contains the list of nodes, i.e the active marks
whose location are optimised for each shape individually. They are written in order of
the level of nodes: 32, 64 and 65 are at the middle, end and start nodes respectively
and are on level 1, 16 is between the start node and node 32, and 48 between middle
and end and are on level 1, and 8, 24, 40 and 56 are on level 3.
Astart = 0.04 indicates that we want on average to skip an arc length of

0.04 of the contour in the start. Aend = 0.04 is likewise skipped in the end (recall
than arc length is normalised internally to a total of one for each shape). This means
that if one shape wants to start at 0.02, another must start at 0.06 etc. Thus Astart
defines a constraint on the start node and Aend a constraint on the end node. There
are also constraints on the remaining seven internal nodes; their node parameters
should on average be 0.5. The constraints are implemented in the nodeCost term.
Since we are running in mode 2 the constraint will not be exactly obeyed - if you
want that, use mode 4.
mode=2 was explained already, and sigmaCut denotes how accurate we what to

model the shapes, roughly corresponding to a relative precision of 0.3%.
nPasses = 40 is usually sufficient, but sometimes the optimasation converges

after only 10 passes. If you are curious, set nPasses = 10 and look at the plots,

and then set nPasses = 30 and execute RunExtra. That is equivalent to
nPasses = 40.

The Run and RunExtra commands finish by showing some plots in figure 1-6.
Figure 1 is the history of node parameters, which gives an excellent overview of the
course of the 9*32 = 288 dimensional optimisation process and reveals convergence
or trends. Figure 2 is the total cost, also helpful for watching for convergence. Figure
3 is the PCA at the start of the analysis. This is useful if you start the search from a
configuration, which is already good, for instance a manual annotation, are definition
based on some heuristic principle. You can for instance used the MDL approach to
fine-tune a manual method and so it is interesting so see what the model look like at
the start compared to at the end which is shown in figure 4. Figure 5 shows the break
down of the MDL const function into the terms corresponding to the modes. A cost
term of one corresponds to lambda equal to the cut value. Finally figure 6 shows the
shapes with the MDL optimised nodes.

To summarise, if you have open curves like the femurs, replace FormFemurs
with your code and just run. Increase Astart and Aend, if some shapes try to move
beyond the end. If you have closed curves, again with no annotated master example,
you would write the following for the metacarpal data:

clear;
InitiateMDL;

studyName='Metacarpal’;
[C, Cn] = FormFemur;

ends = 1;
P = 64;
ps = [32 64 16 48 8 24 40 56];

mode = 2;
sigmaCut = 0.003;
nPasses = 40;
Run;

The changes are ends = 1 (signalling closed curve), and node 65 was omitted.

Node 64 is the location of the end node, which is now also the start node. And
Astart and Aend are omitted.

Running in this way with no annotation is a neutral choice: We are seeking a

reparametrisation, which brings the shape in correspondence, and which are penalised
if they are uneven on average in arc length. If you want the average location to be
exactly even in arc, use mode 4.

Notice that in the metacarpal example it is assumed that all contours are oriented
the same way around the object, and that the start of the contours is at approximately
corresponding points across the set.

Additional illustrative experiments

A number of additional experiments can be performed with the scripts below. These
experiments illustrate properties of the method and provide examples of how to run
the more advanced modes.

Table 2: Other illustrative runs

Script Comment Run time
runBoxBumpTrue.m Initiates the shapes with the

‘true’ positions of the marks and
runs 10 passes. This illustrates
that the MDL solution is a little
different from the ’true’ posi-
tions.

2-3 minutes

runBoxBumpRepro.m Runs two experiments with
boxBump from different initial
configurations showing that in
the large nPasses limit the
two converges to the same result
(although the lower right corner
of the box converges extremely
slow).

10 minutes

runMetacarpalMode3.m Runs 40 passes in mode 3 8 minutes
runFemurFreeMode1.m Runs 40 passes in mode 1, illus-

trating a tendency to run-away.
Ca. 19 minutes

runFemurFreeMode3.m Runs 40 passes in mode 3, giv-
ing uniform marks on average.

Ca. 16 minutes

runFemurFreeMode4.m Runs 40 passes in mode 4, giv-
ing uniform marks on average.

Ca. 16 minutes

runFemurFixed.m Runs 40 passes fixed endpoints.
Actually it converges after 10
passes

Ca. 12 minutes

The purpose of these five runs is the following:
runBoxBumpTrue.m illustrates that the small deviation been the MDL solution

and the ‘true’, seen at the bump is not a deficiency of the optimisation method, but a
reflection of the cost function itself.
runBoxBumpRepro.m demonstrates how to verify that the result does not de-

pend on the initial configuration. Such runs can be extended to a more complete study
on your data, in case you want to verify to what extent your found MDL solution is
unique on your data.

runMetacarpalMode3.m should be compared with runMetacar-
palMode1.m which is run in mode 1. You can see that example 1 which ends up
being extreme with mode 1, is more typical when run in mode 3. This shows that
mode 1 introduces some unwanted bias.
runFemurFreeMode1.m shows that mode 1 with free ends lead to several run-

away for the femur data.

0 100 200
0.4

0.45

0.5

0.55

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0

0.02

0.04

0.06

0.08
N

od
e

va
lu

e

Step number

Femur Free Ends

0 100 200
0

0.02

0.04

0.06

0.08

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.45

0.5

0.55

0.6

0.65

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.4

0.5

0.6

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.45

0.5

0.55

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.48

0.5

0.52

0.54

0.56

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.4

0.5

0.6

0.7

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.45

0.5

0.55

0.6

0.65

N
od

e
va

lu
e

Step number

Femur Free Ends

Figure 1: Mode 1: The seventh parameter (lower left) attains mean 0.525, while the

master is fixed at 0.500. Likewise for the ninth.

0 100 200
0.45

0.5

0.55
N

od
e

va
lu

e

Step number

Femur Free Ends

0 100 200
0

0.02

0.04

0.06

0.08

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0

0.02

0.04

0.06

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.45

0.5

0.55

0.6

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.4

0.5

0.6

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.45

0.5

0.55

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.46

0.48

0.5

0.52

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.45

0.5

0.55

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.48

0.5

0.52

0.54

0.56

N
od

e
va

lu
e

Step number

Femur Free Ends

Figure 2: Mode 2: Here the averages are fixed at 0.500 the now free example 1 at-

tains 0.488 and .496 (blue), so now its no longer mthe minimum but the 4-5 lowest

0 100 200
0.45

0.5

0.55
N

od
e

va
lu

e

Step number

Femur Free Ends

0 100 200
0

0.02

0.04

0.06

0.08

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0

0.02

0.04

0.06

0.08

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.45

0.5

0.55

0.6

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.4

0.5

0.6

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.45

0.5

0.55

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.48

0.5

0.52

0.54

0.56

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.4

0.5

0.6

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.48

0.5

0.52

0.54

0.56

N
od

e
va

lu
e

Step number

Femur Free Ends

Figure 3: Mode 3

0 100 200
0.45

0.5

0.55

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0

0.02

0.04

0.06

0.08

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0

0.02

0.04

0.06

0.08

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.45

0.5

0.55

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.4

0.5

0.6

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.45

0.5

0.55

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.45

0.5

0.55

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.4

0.5

0.6

N
od

e
va

lu
e

Step number

Femur Free Ends

0 100 200
0.48

0.5

0.52

0.54

0.56

N
od

e
va

lu
e

Step number

Femur Free Ends

Figure 4: Mode4.

runFemurFreeMode4.m demonstrates mode 4, which is similar to mode 2, but
the result of mode 4 are nodes uniformly in arc length on average, while this is only
approximately true for mode 2.

The datasets meta2.mat and fermur32.mat are enclosed for the purpose of
verifying, that the results in the paper agree with the software. You are allowed to use
these data for other academic purposes without permission from the author.

3. More on the Structure of the Software

Contours are represented as polylines given by a vector of complex numbers. No-
tice that the imaginary axis points upwards, while most image data has the y-axis
pointing downwards, so remember this when you convert data from x-y coordinates to
complex numbers, i.e. use c = x – i y.

Given a contour and a chosen number of marks, e.g. 64, the mark coordinates are
computed from the contour and the mark parameters, which are denoted a or A.
Run.m was implemented as a script in order to make it work on the workspace

variables. This can be used for further analysis, plotting, and for additional runs using
RunExtra.m.

As described in the paper, the algorithm can be run in four modes. Mode 1 uses a
fixed example. This sometimes leads to run-away, and in general it leads to the un-
wanted effect that case 1 is treated differently from the other cases as demonstrated in
runMetacarpalMode3.m above. Therefore, despite the nice idea of a single la-
belled example mode 1 is really not a lasting option of this framework, and it is in-
cluded merely for historical purposes, and to illustrate why it is not desirable.

In stead of mode 1, three new modes are provided, mode 2, 3, and 4. They all rely
on adding second term, the nodeCost to the MDL cost function to get a total cost
function which is then minimised in the usual way. Mode 2 is the simplest. Here you
simply provide the vector aTarget to be used directly in nodeCost.

Mode 3 and 4 are more sophisticated. Here aTarget in nodeCost is replaced by a
dynamic target aTargetNow, which initially is aTarget, but which is adjusted at the
start of every pass. The adjustment is made so as obtain one of two desired goals:

Mode 3: aTargetNow is adjusted so that A(1,:) = aTarget
Mode 4: aTargetNow is adjusted so that mean(A) = aTarget.

The central optimisation routing exists in two version: the function Optimise.m

that supports mode 1 and Mohammed and OptimiseCon.m which supporting
mode 2, 3, 4, which operates with various constraints on the node parameters through
the node cost. There is a lot of overlap between these two routines, but the choice was
made to keep each version simple.

The code was optimised for speed, and indeed it is the speed that is the most

unique quality of the software. As mentioned in the paper the tree elements in bold in
this pseudo code, each take 1/3 of the time.

Loop over passes
 Loop over nodes
 Loop over 5 steps

Loop over examples
 Loop over + and - step
 Probe a(node) = a(node) +- step of example
 Recompute marks of example
 Do Procrustes of set
 Do PCA of set
 Compute new MDL
 If new MDL is lower accept and break loop
 Undo a(node) change
 End of +- step loop
End of example loop
If <20% of a(node)’s changed, divide step(node) by 2

 End of step loop
 End of node loop
End of passes loop

Recompute the marks involves a lot of book keeping and this would run much

faster in C. Procrustes was done a complex eigenvalue problem, which allows the use
of the fast build-in function and comparable to a C-version. Likewise the PCA is
close to optimal.

Another reason for the speed is the hierarchical node structure, where only the 8
highest level nodes are optimised, while the remaining 56 are uniformed in arc length.

An overview of the run script parameters are tabulated in table 3; a description was
also given above in relation to the femur run

Table 3: Parameters of the optimisation script Run

Parameter Explanation
studyName String used as title of plots
C Cn The contours are the complex rows of C, Cn is the length of

each contour, i.e. contour r is in C(r,1:Cn(r))
ends ends=0: open curve with fixed ends

ends=1: closed curves
ends=2: open curve with free ends

P Granularity (or resolution) of shape: The shape is a sampling
of the curve, The sampling points are called marks
Closed curves have P sampling point. P/2 and P are on the
top level.
Open curves have P+1 marks P/2, P and P+1 are the middle,
end and start respectively.

ps ps are List of nodes gives as a vector of the number of the
marks.

mode Mode=1,2,3 or 4 controls the use of templates and Node-
Cost, see the text

sigmaCut The level at which shape information becomes irrelevant
nPasses The number of passes used for the optimisation

If you want to provide a single example where the node positions are true, to act as
matseer you should used the parameters in table 4. The true position of a mark can
only be used for marks of the top levels. The master must be example 1. In the exam-
ple metacarpal and boxBump the nodes on level 1, 2 and 3 where fixed for the master
example. One could allow fixing only part of the nodes on level 3, but all the nodes at
the higher levels should be fixed. The fixing is done by letting the contour have
points at the nodes. SO if point 29 on contour 1 is fixed

Table 4: Additional parameters used to define annotated examples (the script
InitiateMDL sets useMasterNodeValues=0 i.e. the default is not to use this fea-
ture)

Parameter Explanation
useMasterNodeValues 1 indicates that MasterNodeValues are to be used.
MasterNodeValues List of the location of the nodes on the master given as a

vector of point numb3rs in the contour, see text
initAll 1 if all the shapes should be initialised according to

MasterNodeValues

There are two examples of this in from the paper: In the boxBump we know that

the true points are MasterNodeValues = [1 2 3 4 5 6 7 25 26];
 As shown in figure …
And in the metacarpal case the contours are using a heuristic tatdraiatoin along a

bone axis and the truth according to these is given by MasterNodeValues = [1 31
71 111 141 171 211 251 281]; In the metacarpal case the optimisation is in
fact started using exactly this alignment, so all the shapes are started here, as signalled
by the initAll=1. InitAll=1 is also used in runBoxBumpTrue above. The default
value of initAll is 0 and is set by InitiateMDL.

 P = 64;
ps = [32 64 16 48 8 24 40 56]; % 64 is the same as 0
useMasterNodeValues = 1;
MasterNodeValues = [1 2 3 4 5 6 7 25 26];

P = 64;
ps = [32 64 16 48 8 24 40 56];
useMasterNodeValues = 1;
MasterNodeValues = [1 31 71 111 141 171 211 251 281];
initAll = 1;

When you are using a master example the way to convey the information about the

true location of the marks on the master example is through the parameters in table 4.
The true locations must be among the nodes, and the locations must be among the
points defining the contours. For example the boxBump contours are defined as in the
following figure, using 26 points where 1 and 26 are at the same location. 8 of these
points are selected as nodes of the master. They are listed i.e. in the runBoxBump
below node: 64 8 16 24 32 40 48 56 are at C([,1 2 3 4 5 6 7 25 26]).

The runBoxBump script creates 24 random shapes according to the parameters

given to FormBoxBump. The last parameter 0.7 controls how much the bum’s position
varies horizontally, the second the vertical box side length (the first parameter is not
used). Thus the figures are created with two degrees of freedom, so we expect only
two eigenvalues to be significant. The random generator is initialised in the routine so
you should obtain the same data when running it.

1 and 26

2345

6
257

